JSQL Edit v1.0

Product Requirements Document

by Benson Chan | Kanwardeep Hazrah | Rana Khartabil | Irwin Kwan

Document History

	Modified By
	Date
	Document Version
	Remarks

	J SQL Team
	February 14, 2002
	1.0
	Initial revision

	
	
	
	

Table of Contents

(inserted last)

Purpose of Document

The purpose of this product requirements document (PRD) is to outline the requirements of the J SQL Editor system to be built for the client, Mr. Gururaj Deshpande of Cognos Inc. (“The Customer” hereafter).

Besides for the requirements, this PRD also defines non-functional requirements, features, architecture, key components, the preliminary user-interface design, test plans as well as project management issues.

Background Information

The Customer uses a variety of databases for its solutions. The development teams of the Customer use an array of SQL editors from each of the DBMS is perform operations on the database such as queries.

To simplify the process of working on the diverse databases, The Customer requires a system with a consistent user-interface which can interact with the DBMS. This solution provides the Customer’s development teams with a streamlined way of handling all databases from a user-perspective.

High-Level System Description

JSQL Edit is a graphical front-end to a database that allows easy querying of a database and the viewing of results in a simple, tabular format. JSQL Edit provides a consistent user interface that can be used to query any compatible database, thus increasing productivity.

Queries can be made in JSQL Edit either directly, by typing in SQL statements in its editor, or generated automatically using a drag-and-drop interface with components. The database components, such as tables and columns, are listed in a sidebar. A two-dimensional table displays the results of the query.

JSQL Edit uses Java technology such as JDBC. JDBC provides a database-independent layer for over 140 databases management systems, making any JDBC-compliant program portable across a large number of databases. Java’s natural cross-platform compatibility gives the program extreme flexibility across all kinds of platforms.

Requirements Overview

The project is used to query a number of databases. The results are displayed in a readable tabular format. This is useful for developers within a design team who may be looking at expected results for testing purposes, or database designers who may want to test new database schemas.

The client, Cognos, has requested a graphical front end to a database that is simple and easy to use. It incorporates a text-editor to type in SQL statements, and returns the results in a simple-to-read table. In addition, a view of all database objects in a hierarchical tree is available for easy reference.

The program must be compatible with a large number of databases, including but not limited to Oracle and MySQL. It must also be cross-platform compatible across Windows and Unix systems.

The client is interested in seeing a Java tool written in JDBC. The tool will be used as a proof-of-concept for the possible use of JDBC within Cognos products.. It is a demo for the quality and difficulty of implementing Java for database applications.

Functional Requirements

	Requirement Number
	Requirement

Name
	Requirement Description
	Remarks

	FR1
	Graphical User Interface Design
	User creates SQL statements using an intuitive visual tool
	

	FR1.1
	Tree view
	Database elements are represented in a tree hierarchy.
	

	FR1.2
	Save SQL statements
	User saves SQL statements for restore.
	

	FR1.3
	SQL text editor
	SQL statements can be typed and edited in a SQL text editor window.
	

	FR1.4
	Drag-&-Drop
	Database elements in the hierarchical tree view may be dragged and dropped into the SQL text editor window.
	

	FR1.5
	Restore SQL statements
	User restores SQL statements that have been saved for re-use.
	SQL text loaded into the SQL text editor.

	FR2
	Easy-to-read data
	User must be able to view data retrieved from a database in an easy to understand format.
	

	FR2.1
	Results Table
	Returned results of the queries are represented as two-dimensional tables.
	

	FR3
	Connectivity
	User must be able to connect to a specified set of databases.
	

	FR3.1
	Customized Connection String
	Connection strings must be customizable
	Databases have different connection strings

	FR3.2
	Customized Database Driver
	Database driver must be customizable
	Databases have different drivers for connections

	FR4
	Performance Metrics
	Database metrics, such as speed of queries, must be recorded
	

	FR4.1
	Query Time
	Record the time required for Query execution
	

Non-Functional Requirements

	Requirement Number
	Requirement Description
	Remarks

	NFR1
	System’s graphical user-interface uses Java Swing as a development language
	Modern user interfaces in Java must be developed in Swing.

	NFR2
	System uses JDBC for database connectivity.
	JDBC provides a native-Java layer for multiple database support.

	NFR3
	System must be portable between Unix and Win32 environments.
	This is a client-imposed made possible using the Java language.

	NFR4
	System will only handle one-dimensional queries.
	

	NFR5
	System will connect to mySQL database.
	System will connect to mySQL database as a testing platform. This is a minimal requirement. The more databases that the system can be tested with, the better.

	NFR6
	System will connect to

Oracle database.
	As above.

	NFR7
	Graphical User Interface must be simple
	This makes the system easy-to-use. It is also a client-requested requirement.

Use Cases

Actors of the System

	Actor
	Role
	Remarks

	SQL author
	Write SQL statements
	This person would be using JSQL Edit and its features to create and verify SQL statements as opposed to using a simple text editor.

	Database browser
	View data from database
	This person would use JSQL Edit to query a database.

	Database Management System (DBMS)
	Accept requests from JSQL Edit, perform the demanded tasks and return data.
	The DBMS contains all of the information that is displayed to the user. JSQL Edit communicates with a database and displays this to the user.

Use Cases

[image: image1]
The user of this system can perform three categories of tasks: 1) Connect to a user-defined database source; 2)Write, Edit and save SQL queries and 3) Use written SQL queries to query a database and obtain results in a table format.
Architecture

The system consists of a primary component, the JSQL Edit program. The program interacts with the user and the database. It essentially acts as an intermediate entity between the user and the database.

Within the program are a number of components. Among the most prominent of these classes is the GUI and the GUI event handlers. The GUI is the user interface, which contains the components such as a Textbox (for typing SQL queries), a TreeView, for the database elements, and a TableView, for the display of the database data. The GUI event handlers handle events such as submitting a query, dragging data in the treeview, and so forth.

The event handler interacts with the database object marshaller, which translates the raw database data into Java objects that can be manipulated so they are displayable on the GUI. This layer uses JDO (Java Data Objects) to model its objects.

The event handler also interacts directly with the database connection layer as well. The database connection layer handles all interactions with the database, including information and data retrieval, sending queries, and initializing connections. This layer (and possibly the data marshalling layer) are the only layers that interact with JDBC.

Please see Figure 1 for a high-level view of the architecture.

Figure 1: High Level System Architecture
[image: image2.png]User

JSQL Edit
GUI
saL
TreeView Statement
TextBox

Database || Other GUI
Results View || Components

GUIEvent Handler
(Clicks in GUI components;
data entry; etc)

File Handling

Database Object Marshalling
(Totranslate database
datainto Java Objects)

Parser

Database Connection Layer

Uses

Database
L)

Uses

JDBC

Key Mechanisms

· Stable, persistent connections

Once connected, the program will remain connected to the database until the user disconnects or the program exits.

· Database access is Read-only

At no point in time will the user be permitted to edit the database properties. The program does not support the insertion and deletion of data.

· Customizable connection strings

The program supports customizable connection strings to allow for user-fine-tuning, if required. This is an option intended for advanced users.

· Specifiable database driver

Database drivers for untested databases may be specified when connecting to allow the user to connect to whatever database that they wish.
Graphical User-Interface Design

[image: image3]
Graphical user interface will have three major components.
· A hierarchical tree view will be visible to the user upon successful connection to the data source. Selected or non-selected objects will be given different color codes for increased usability. A color coding will also be used for selectable and non selectable objects. Selectable objects may be dragged and dropped on the SQL Text Editor window.

· A SQL Text window will allow the user to write or edit the SQL statements either manually or using SQL command tools. Query may be saved in file.
· Query results may be obtained in tabular form in the Results section upon successful run of the query.

Test Plans

There will be four different classes of tests for this project:

· Unit testing

· System testing

· Manual testing

· User Interface evaluation

The development platforms are a mixture of Windows and Unix systems. This is not an impedance to the system for two reasons: 1. the client requires cross-platform compatibility, so cross-platform development allows the early detection of any incompatible calls. 2. Java is theoretically cross-platform, meaning that most normal development will not result in incompatible code across platforms.

Unit Testing

Unit testing will come into effect once the component roles are specifically defined and interfaces are implemented. Expected results, developed based on requirements and with customer-feedback, for each component are required before automation can begin.

Unit testing can be implemented for the backend components that do background data processing. For example, database queries on a known set of data can be automatically tested. Parsing, file handling, and limited event handling can be automated as well.

Code design will be implemented with automated testing in mind to make the program easier to trace, debug, and test.

An added benefit of automated testing is that it allows the automated testing of all objects on a regular basis. The build tool Ant supports the use of automated testing using JUnit, which adds to the ease of testing.

Integration Testing

Integration testing of the components will be tightly coupled with the process of unit testing, as the plan is to ensure that all components function individually and as an entire system as per the requirements.
Manual Testing

The extensive GUI features that feature in this project cannot be tested automatically and require manual intervention. At this stage, specific test cases have not been written, but they will be written to first test a component during design, and then specific scenarios.

User Interface Evaluations

The user interface must be simple, usable, and effective. To test this, user interface evaluation techniques such as heuristics, taped evaluations, and usability tests must be performed. Based on analysis and user feedback, the interface can be adjusted to ensure that it is as easy to use for as many people as possible. The customer will play a major role in the evaluation of the GUI.
Project Plan

MAJOR MILESTONES

Requirements Definition – March 2002

· Finalization of requirements document

V0.2 Brahma – Alpha 1 Client prototype – May 2002

Features:

· Stable connection to at least Oracle and MySQL dabatabase

· Ability to enter queries through text box

· Ability to view query results using graphical user interface results table

· Basic toolbar and menu functions

· Save SQL query string

· Executing common SQL queries (SELECT * FROM *)

· Exiting

V0.6 Vishnu – Beta 1 Release: September 2002

Features:

· Basic tree-view for database and tables
· Most toolbar and menu functionality
· Preferences
· Customized connection string
· Simple SQL parsing
· Handle window events such as resizing, minimizing, and scrolling
· Custom database driver
V1.0 Mahesh – Client Release: December 2002

Features:

· Complete tree-view for all database objects

· Full Drag and drop functionality

Project Schedule

	Task
	Remarks
	
	Progress
	Target Milestone

	Requirements freeze
	Finalizing the initial set of customer requirements
	
	Finished
	Requirements Document

	Initial GUI design
	Creation of Basic GUI interface
	
	Finished
	Requirements Document

	Component Design
	Formal design of components
	
	
	Brahma

	Component Unit Testing
	Testing of individual components
	
	
	Persistent

	Basic GUI implementation
	Implementation of
	
	
	

	Component Implementation
	Coding of components in Java
	
	
	

	DB Connection Component Design
	Design of JDBC connection module
	
	
	Brahma

	DB Connection Component Implementation
	Coding of JDBC connection module
	
	
	Brahma

	Connection Component Unit Testing
	Testing of JDBC connection module

	
	
	Brahma

	GUI – Textbox Entry
	Typing SQL strings
	
	
	Brahma

	GUI – Results Table
	Display of database query results
	
	
	Brahma

	Simple GUI – Tree-view
	Tree-view of database objects
	
	
	Vishnu

	GUI – Connection Management
	Using GUI to manage database connections and drivers
	
	
	Vishnu

	GUI – Drag and Drop functionality
	Drag-and-drop from TreeView
	
	
	Mahesh

	GUI – SQL Query Save and Restore
	Saving SQL text queries
	
	
	Vishnu

	SQL Parsing
	Parsing SQL queries
	
	
	Vishnu

	Database object translation into JDO
	Marshalling of database objects into JDO
	
	
	Vishnu

	Basic window event handling
	Handling resizing, scrolling, etc.
	
	
	Mahesh

Outstanding Issues

Coding standards—To be settled amongst developers.
Glossary

Java
JDBC
Swing Foundation Classes

Database Management System

SQL Textbox

Hierarchical Tree View

Results Table

- 14 -

[image: image4.png]O

/ CornectTaatabase

User \
EdisOL

O

QueyResuls

[image: image5.png]JSGL Edi
File Edit Help

[_[C1x]

1BEE 9rEgs B

= Universiy Database
¢ O studeris
[studertiarme
[studeriis
[duress
[age
[oender
[courses
@ ClPrograms
[seo
Dceo
Dewe
Desi
Dere
@ T Professors
[} Fromssomae
[Frofessoris

comoct T [oac
[Tsaect | | rram || Wharon | Fevnge | _orsory | cuwey |
TorEdtor:
Sestencime;

[cowr | snowrosuts |
Resut:

Stueriame Stugertia Gender l
b, Lrs 2izoiss 3 E
usca,Lans iins F
iia, Fad tosrort i
v, L ozert i
icar, Lol 20001 F
Soion rianns Tsserss F
Doz, sl torstin i
CorB0 tesrai i
e, ity icoss F
v, e dziea: i
oo i 20021 i
etne, e Tosorai F
Nadatoit, Do estioe i
N, Toan forzezs i
omar Shane testisd F

Clear Results

